

¹Neuropsychology Lab, School of Psychology, University of East Anglia, UK; ²Norwich Medical School, University of East Anglia, UK; ³School of Health Science, University of East Anglia, UK

University of East Anglia

COMPUTERIZED EXTRAPERSONAL NEGLECT TEST (CENT)

- attention deficits are Visual very common following stroke with visual neglect as a classic manifestation.
- Visual neglect has been shown to dissociate between near and far space [1], but currently there is no validated tool that measures visual attention in far space [2].

CENT is a quick & portable test of visual attention in far space.

Sex; N (%)

Male

Right

Right

Missing

Right

None

Search Visual analysis adapted from [3].

Study 1: Descriptive statistics of normative sample (n = 179)

Age	Mean age	n	n Male	n Total		Handedr	ness	Mean year's
group	(SD)	Female		ΠΙΟΙΔΙ	Left	Right	Ambidextrous	education
18-29	23.11 (3.21)	20	16	36	3	29	3	16.77 (1.99)
30-39	35.23 (3.11)	11	15	26	5	20	0	17.21 (5.28)
40-49	43.50 (2.93)	13	7	20	2	17	0	17.19 (4.18)
50-59	55.03 (2.68)	19	18	38	2	32	1	16.44 (3.78)
60-69	63.73 (2.99)	13	17	32	4	27	1	15.70 (3.72)
70-79	72.93 (2.32)	8	10	19	3	14	2	14.97 (4.21)
80-94	84.75 (4.50)	5	3	8	2	6	0	15.75 (4.00)
Overall	49.29 (18.36)	89	86	179	21	145	7	16.34 (3.84)

Impact of aging and stroke on a new computerized test of visual attention in far space Stéphanie Rossit¹, Hannah Browning¹, Allan Clark², Valerie Pomeroy³ & Helen Morse¹

s.rossit@uea.ac.uk

Visual Search task **Bisection task** Study 2: Descriptive statistics of stroke survivors and controls Neglect No neglect **Healthy controls** (n = 20) (n = 37) (n = 57) Age: mean (SD, min, max) 69.70 (8.95, 48-88) 68.49 (13.20, 32-90) 69.00 (7.26, 60-88) 7 (35%) 17 (45.90%) 24 (42.10%) Female 13 (65% 30 (52.60%) 20 (54.10%) 3 (5.30%) Missing Years education; mean (SD, min, 7.08 (3.67, 4-16) 7.08 (3.53, 2-16) 11.47 (21.59, 8.50-26) Handedness; N (%) 18 (90%) 31 (83.80%) 45 (78.90%) 2 (10%) 6 (16.20%) 9 (15.8%) 0 (0%) 0 (0%) 3 (5.30%) Ambidextrous Side of stroke; N (%) 5 (25%) 14 (37.80%) 14 (70%) 22 (59.50%) 1 (2.70%) 1 (5%) **Bilateral** Type of stroke; N (%)

17 (85%) 34 (91.90%) Ischaemic 2 (10%) 3 (8.10%) Haemorrhagic 1 (5%) 0 (0%) Side of weakness; N (%) 11 (55%) 16 (43.20%) 3 (15%) 6 (16.20%) 6 (30%) 15 (40.50%) Days post-stroke; mean (SD, min, 103.25 (59.24, 32-252) 105.76 (124.26, 19-783) Length of stay; mean days (SD, min 21.82 (25.20, 1-98) 13.46 (20.38, 1-91)

Age is the primary factor

- Cluster 1 were younger than Cluster 2 (no other demographics differed)
- Cluster 1 (n = 103; mean age = 44): shorter durations, fewer and bisection intersections in search path, higher quality of search score and increased rightward error in bisection task
- Cluster 2 (n = 76; mean age = 57): longer durations, more and bisection intersections, lower quality of search, and increased leftward error in bisection task

Stroke This research is funded by the Stroke Association (SA PGF 19\100016)

STUDY 2: IMPACT OF STROKE (N = 57 STROKE PATIENTS + 57 CONTROLS)

		Validation test	Ν	Score direction	Sensitivity rate	False positives	Specificity rate	False negatives
					(true positives)		(true negatives)	
CENT ⁄isual earch	Overall	BIT ⁴ Star Cancellation	57		80%↑	10.60%	89.40%↑	20%
	accuracy score	OCS ⁵ Cancellation	57		87.50%↑	12.20%	87.80% ↑	12.50%
CENT section	Line bisection	Paper-and- pencil line bisection ⁶	57	Right neglect	84.60%↑	93.20%	6.80%↓	15.40%
	error			Left neglect	23.10%↓	0%	100% ↑	76.90%

CENT has good validity, internal consistency & visual search accuracy correlates with stroke recovery⁷

Correlation (Bonferroni corrected)

Thank you to recruitment sites NHS NHS Norfolk Community

NHS

University Hospitals

Health and Care

Cambridge **University Hospitals** NHS Foundation Trust

my lit east coast community healthcar

NHS Norfolk and Norwich Cambridgeshire and Peterborough **VHS Foundation True**

References

Neuropsychologia, 50(6), 115-1123. 1495-1526. Medicine and Rehabilitation, 68(2), 98–102.

Neglect-specific deficits in CENT visual search accuracy & quality of search

Healthv contr

[1] Amiola et al. (2012). Near and far space neglect: task sensitivity and anatomical substrates. [2] Checketts et al. (2021). Current clinical practice in the screening and diagnosis of spatial neglect poststroke: Findings from a multidisciplinary international survey. Neuropsychological Rehabilitation, 31(9),

[3] Dalmaijer et al. (2015). CancellationTools: All-in-one software for administration and analysis of cancellation tasks. Behavior Research Methods, 47(4), 1065-1075. [4] Wilson et al. (1987). Development of a behavioral test of visuospatial neglect. Archives of Physical

[5] Demeyere et al. (2015). The Oxford Cognitive Screen (OCS): Validation of a stroke-specific short cognitive screening tool. Psychological Assessment, 27(3), 883-894 [6] Rossit et al. (2019). Efficacy of home-based visuomotor feedback training in stroke patients with chronic hemispatial neglect. Neuropsychological Rehabilitation, 29(2), 251-272.

[7] Duncan et al. (1999). The Stroke Impact Scale Version 2.0: Evaluation of Reliability, Validity, and Sensitivity to Change. *Stroke*, *30(10)*, 2131–2140.

